

[Type here]

Secure Coding Checklist
For Developers Who Haven’t
Time to Read the OWASP
Guidelines

Doc Revision: Version 1.0

Doc Revision Date: March 26, 2015

Author: Declan O’Riordan

Head of Security Testing

Test and Verification Solutions

Additional Information: asuresecure.testandverification.com

S
e

c
u

re
 C

o
d

in
g

 C
h

e
c

k
lis

t

http://asuresecure.testandverification.com/

Page 2 © Copyright Test and Verification Solutions Ltd. 2014

Application Security Coding Checklist

1. Input Validation:

uct all data validation on a trusted system (e.g., the server)

untrusted sources (e.g., databases, file streams, etc.)

validation routine for the application

-8, for all sources of input

ine if the system supports UTF-8 extended character sets and if so, validate after UTF-8

decoding is completed

content (e.g. Cookie names and values). Be sure to include automated post backs from JavaScript,

Flash or other embedded code

 to the target of the

redirect, thus circumventing application logic and any validation performed before the redirect)

d characters, whenever possible

additional controls like output encoding, secure task specific APIs and accounting for the utilization

of that data throughout the application . Examples of common hazardous characters include: < > " '

% () & + \ \' \"

discretely

• Check for null bytes (%00)

• Check for new line characters (%0d, %0a, \r, \n)

• Check for “dot-dot-slash" (../ or ..\) path alterations characters. In cases where UTF-8 extended

character set encoding is supported, address alternate representation like: %c0%ae%c0%ae/

(Utilize canonicalization to address double encoding or other forms of obfuscation attacks)

2. Output Encoding:

trust boundary. HTML entity encoding is one example, but does not work in all cases

ended interpreter

-trusted data to queries for SQL, XML, and LDAP

-trusted data to operating system commands

 © Copyright Test and Verification Solutions Ltd. 2014 Page 3

Application Security Coding Checklist

3. Authentication and Password Management:

ges and resources, except those specifically intended to be public

zed implementation for all authentication controls, including libraries that call external

authentication services

the centralized authentication control

 All authentication controls should fail securely

authentication mechanism

graphically strong

one-way salted hashes of passwords are stored and that the table/file that stores the passwords

and keys is write-able only by the application. (Do not use the MD5 algorithm if it can be avoided)

n a trusted system (e.g., the server).

authentication implementations

on data was

incorrect. For example, instead of "Invalid username" or "Invalid password", just use "Invalid

username and/or password" for both. Error responses must be truly identical in both display and

source code

 to external systems that involve sensitive information or

functions

stored in a protected location on a trusted system (e.g., the server). The source code is NOT a

secure location

-temporary passwords over an encrypted connection or as encrypted data, such as in

an encrypted email. Temporary passwords associated with email resets may be an exception

credentials should be sufficient to withstand attacks that are typical of the threats in the deployed

environment. (e.g., requiring the use of alphabetic as well as numeric and/or special characters)

commonly used, but 16 is better or consider the use of multi-word pass phrases

 Password entry should be obscured on the user's screen. (e.g., on web forms use the input type

"password")

is common). The account must be disabled for a period of time sufficient to discourage brute force

guessing of credentials, but not so long as to allow for a denial-of-service attack to be performed

authentication.

k / song /

film" are a bad questions because bestsellers will be very common answers)

-registered address with a temporary

link/password

 time

-use

Page 4 © Copyright Test and Verification Solutions Ltd. 2014

Application Security Coding Checklist

password re-use

force password changes based on requirements established in policy or regulation. Critical

systems may require more frequent changes. The time between resets must be administratively

controlled

The last use (successful or unsuccessful) of a user account should be reported to the user at their

next successful login

password. This attack pattern is used to bypass standard lockouts, when user IDs can be harvested

or guessed

-supplied default passwords and user IDs or disable the associated accounts

-authenticate users prior to performing critical operations

-Factor Authentication for highly sensitive or high value transactional accounts

any malicious code

4. Session Management:

n management controls. The application should only recognize

these session identifiers as valid

ensure sufficiently random

session identifiers

restricted value for the site

nnection

business functional requirements. In most cases it should be no more than several hours

active. Especially for applications supporting rich network connections or connecting to critical

systems. Termination times should support business requirements and the user should receive

sufficient notification to mitigate negative impacts

successful login

identifier on any re-authentication

located in the HTTP cookie header. For example, do not pass session identifiers as GET parameters

access by other users of the server, by

implementing appropriate access controls on the server

session hijacking scenarios where the original identifier was compromised)

occur during authentication. Within an application, it is recommended to consistently utilize HTTPS

rather than switching between HTTP to HTTPS.

-side operations, like account

management, by utilizing per-session strong random tokens or parameters. This method can be

used to prevent Cross Site Request Forgery attacks

 © Copyright Test and Verification Solutions Ltd. 2014 Page 5

Application Security Coding Checklist

 standard session management for highly sensitive or critical operations by utilizing per-

request, as opposed to per-session, strong random tokens or parameters

the HttpOnly attribute, unless you specifically require client-side scripts within your

application to read or set a cookie's value

5. Access Control:

decisions

-wide component to check access authorization. This includes libraries that call

external authorization services

n information

"includes" and requests from rich client-side technologies like AJAX and Flash

ict access to files or other resources, including those outside the application's direct control, to

only authorized users

estrict direct object references to only authorized users

access controls

-relevant configuration information to only authorized users

match

se encryption and integrity checking on the server side

to catch state tampering.

transactions/time should be above the actual business requirement, but low enough to deter

automated attacks

check, as it is can be spoofed

-validate a user’s authorization to ensure

that their privileges have not changed and if they have, log the user out and force them to re-

authenticate

e disabling of unused accounts (e.g., after no more than

30 days from the expiration of an account’s password.)

ceases (e.g., changes to role, employment status, business process, etc.)

least privilege possible

authorization criteria and/or processes so that access can be properly provisioned and controlled.

This includes identifying access requirements for both the data and system resources

Page 6 © Copyright Test and Verification Solutions Ltd. 2014

Application Security Coding Checklist

6. Cryptographic Practices:

 secrets from the application user must be implemented

on a trusted system (e.g., the server)

m strings should be generated

using the cryptographic module’s approved random number generator when these random values

are intended to be un-guessable

-2 or an equivalent

standard. (See http://csrc.nist.gov/groups/STM/cmvp/validation.html)

7. Error Handling and Logging:

 system details, session identifiers

or account information

d not rely on the server configuration

e.g., the server)

-trusted data will not execute as code in the intended log viewing

interface or software

or passwords

ly failures

ns, including changes to the security configuration settings

to validate log entry integrity

 © Copyright Test and Verification Solutions Ltd. 2014 Page 7

Application Security Coding Checklist

8. Data Protection:

ege, restrict users to only the functionality, data and system information that

is required to perform their tasks

access and purge those temporary working files a soon as they are no longer required.

side. Always use well vetted algorithms, see "Cryptographic Practices" for additional guidance

server-side source-code from being downloaded by a user

-

cryptographically secure manner on the client side. This includes embedding in insecure formats

like: MS viewstate, Adobe flash or compiled code

sensitive information

mation to

attackers

authentication

sitive information. Cache-Control: no-store, may

be used in conjunction with the HTTP header control "Pragma: no-cache", which is less effective,

but is HTTP/1.0 backward compatible

data is no longer required

(e.g. personal information or certain financial data).

data, temporary files and data that should be accessible only by specific system users

9. Communication Security:

protecting the connection and may be supplemented by discrete encryption of sensitive files or non-

HTTP based connections

lid and have the correct domain name, not be expired, and be installed

with intermediate certificates when required

access and for all other sensitive

information

s for all connections

sites

10. System Configuration:

servers, frameworks and system components have all patches issued for the version in use

Page 8 © Copyright Test and Verification Solutions Ltd. 2014

Application Security Coding Checklist

ove all unnecessary functionality and files

intended for public indexing into an isolated parent directory. Then "Disallow" that entire parent

directory in the robots.txt file rather than disallowing each individual directory

andled

differently in different pages in the application

supports file handling is required, utilize a well-vetted authentication mechanism

 handles both HTTP 1.0 and 1.1, ensure that both are configured in a similar

manner or insure that you understand any difference that may exist (e.g. handling of extended

HTTP methods)

 the OS, web-server

version and application frameworks

form to support auditing

 software in it

authorized development and test groups. Development environments are often configured less

securely than production environments and attackers may use this difference to discover shared

weaknesses or as an avenue for exploitation

development and production

11. Database Security:

not run the database command

lowest possible level of privilege when accessing the database

stored in a separate configuration file on a trusted system and they should be encrypted.

tables in the database

inistrative passwords. Utilize strong passwords/phrases

or implement multi-factor authentication

utility packages, install only the minimum set of features and options required (surface area

reduction))

h different credentials for every trust distinction

(e.g., user, read-only user, guest, administrators)

 © Copyright Test and Verification Solutions Ltd. 2014 Page 9

Application Security Coding Checklist

12. File Management:

oaded

purposes

extension alone is not sufficient

 save files in the same web context as the application. Files should either go to the content

server or in the database.

oad directories

the associated path or the chrooted environment

ate the value

of the parameter being passed and if it does not match one of the expected values, either reject it

or use a hard coded default file value for the content instead

wed, then the redirect

should accept only validated, relative path URLs

-defined list of paths

s are read-only

13. Memory Management:

-trusted data

destination buffer size is equal to the source buffer size, it may not NULL-terminate the string

oop and make sure there is no danger of writing

past the allocated space

functions

g., connection objects, file handles,

etc.)

-executable stacks when available

ints

14. General Coding Practices:

tasks

-in APIs to conduct operating system tasks. Do not allow the application to

issue commands directly to the Operating System, especially through the use of application initiated

command shells

configuration files

Page 10 © Copyright Test and Verification Solutions Ltd. 2014

Application Security Coding Checklist

multaneous requests or use a synchronization mechanism to

prevent race conditions

 just before

the first usage

and drop them as soon as possible

presentation

and how it interacts with numeric calculation. Pay close attention to byte size discrepancies,

precision, signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-

number" calculations, and how your language handles numbers that are too large or too small for

its underlying representation

 party code and libraries to determine business necessity and

validate safe functionality, as these can introduce new vulnerabilities

signatures for your code and ensure your download clients verify those signatures. Use encrypted

channels to transfer the code from the host server.

15. References:

https://www.owasp.org/index.php/Secure_Coding_Principles

https://www.owasp.org/index.php/Secure_Coding_Cheat_Sheet

https://www.owasp.org/index.php/OWASP/Training/OWASP_Secure_Coding_Practices_-

_Quick_Reference_Guide

